Tiling patterns from ABC star molecules: 3-colored foams?
نویسندگان
چکیده
We present coarse-grained simulations of the self-assembly of 3-armed ABC star polyphiles. In systems of star polyphiles with two arms of equal length the simulations corroborate and expand previous findings from related miktoarm star terpolymer systems on the formation of patterns containing columnar domains whose sections are 2D planar tilings. However, the systematic variation of face topologies as the length of the third (unequal) arm is varied differs from earlier findings regarding the compositional dependence. We explore 2D 3-colored foams to establish the optimal patterns based on interfacial energy alone. A generic construction algorithm is described that accounts for all observed 2D tiling patterns and suggests other patterns likely to be found beyond the range of the simulations reported here. Patterns resulting from this algorithm are relaxed using Surface Evolver calculations to form 2D foams with minimal interfacial length as a function of composition. This allows us to estimate the interfacial enthalpic contributions to the free energy of related star molecular assemblies assuming strong segregation. We compare the resulting phase sequence with a number of theoretical results from particle-based simulations and field theory, allowing us to tease out relative enthalpic and entropic contributions as a function of the chain lengths making up the star molecules. Our results indicate that a richer polymorphism is to be expected in systems not dominated by chain entropy. Further, analysis of corresponding planar tiling patterns suggests that related two-periodic columnar structures are unlikely hypothetical phases in 4-arm star polyphile melts in the absence of sufficient arm configurational freedom for minor domains to form lens-shaped di-gons, which require higher molecular weight polymeric arms. Finally, we discuss the possibility of forming a complex tiling pattern that is a quasi-crystalline approximant for 3-arm star polyphiles with unequal arm lengths.
منابع مشابه
Insights into ordered microstructures and ordering mechanisms of ABC star terpolymers by integrating dynamic self-consistent field theory and variable cell shape methods.
A theoretical approach coupling dynamic self-consistent field (SCF) theory for inhomogeneous polymeric fluids and variable cell shape (VCS) method for automatically adjusting cell shape and size is developed to investigate ordered microstructures and the ordering mechanisms of block copolymer melts. Using this simulation method, we first re-examined the microphase separation of the simplest AB ...
متن کاملPolygonal tiling of some surfaces containing fullerene molecules
A tiling of a surface is a decomposition of the surface into pieces, i.e. tiles, which cover it without gaps or overlaps. In this paper some special polygonal tiling of sphere, ellipsoid, cylinder, and torus as the most abundant shapes of fullerenes are investigated.
متن کاملKaleidoscopic morphologies from ABC star-shaped terpolymers.
Star-shaped terpolymers of the ABC type composed of incompatible polymer components give a variety of ordered structures with mesoscopic length scales depending on their composition ratio. Their peculiar features are summarized in this report. Polymer components adopted are polyisoprene (I), polystyrene (S) and poly(2-vinylpyridine) (P), and many monodisperse samples of the I(X)S(Y)P(Z) type we...
متن کاملTiling triangle ABC with congruent triangles similar to ABC
We investigate the problem of cutting a triangle ABC into N congruent triangles (the “tiles”), each of which is similar to ABC. The more general problem when the tile is not similar to ABC is not treated in this paper; see [1]. We give a complete characterization of the numbers N for which some triangle ABC can be tiled by N tiles similar to ABC, and also a complete characterization of the numb...
متن کاملIslamic star patterns from polygons in contact
We present a simple method for rendering Islamic star patterns based on Hankin’s “polygons-in-contact” technique. The method builds star patterns from a tiling of the plane and a small number of intuitive parameters. We show how this method can be adapted to construct Islamic designs reminiscent of Huff’s parquet deformations. Finally, we introduce a geometric transformation on tilings that exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 10 37 شماره
صفحات -
تاریخ انتشار 2014